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What you will learn today

Fundamentals: Interpretation of dimensionality reduction (DR) results

- Linear DR
- Axis level Tutorial Materials

Fga0
- Observed-pattern level } 'ii' Ilr
Univariate focus - .ﬁﬂ -
Composite variable focus "o n
Classifier-based
Local pattern correlation

- Nonlinear DR

- Model-mechanism level

Gradient-based
Parametric nonlinear DR

https://hyeonword.com/dr-tutorial/

Practices: Interpretations with existing libraries



Interpretation of dimensionality reduction (DR) results

Wine dataset (13D) . .:
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*displayed values are
after the standardization How are they Separated? ® Cultivar 1
: : Cultivar 2
What are their differences? ® Cultivar 3
Axis 1
* Interpreting a lower-dimensional space Linear DR

* |Interpreting based on observed patterns (e.g., clusters) Nonlinear DR
* |Interpreting from a DR model/mechanism level Nonlinear DR

No single best way for the interpretation so far (especially, for nonlinear DR)




Interpretation of dimensionality reduction (DR) results
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* Interpreting a lower-dimensional space

Linear DR

No single best way for the interpretation so far (especially, for nonlinear DR)




Linear DR

- Finds a linear projection from the original dimensions to low-dimensional axes
X-P=Y XeRr™ original data, P € R%?" projection matrix, Y € R™: projected data,

(n: # of instances, d: # of original dimensions, d": # of dimensions after projection)

-+ Representative methods

Principal component analysis (

PCA) [Pearson,1901]:
Linear discriminant analysis (L

Preserves data variance as much as possible
DA) [Fisher, 1936]: Maximizes the separation of predefined groups
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Interpreting the axes

Wine dataset (13D)

alchol malic_acid

ash alcalinity_ash magnesium total_phenols flavanoids no

WO N = O

1.52
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0.20
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0.30

Linear dimensionality reduction
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LDA result

AXIs 2

® Cultivar 1
Cultivar 2
® Cultivar 3

AXxis 1

The projection matrix contains the information of the axes

-or example, Axis 1 i1s generated by
-0.20 alcohol + 0.11 malic acid - 0.06 ash ...



Interpreting the axes

B

Axes 1 and 2 should be highly influenced
by flavanoids and proline, respectively

Visualize
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AXIs 2
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Interpreting the axes

AXIS 1 AXIS 2
alchol - [] -
malic_acid- [ ]
ash - |
alcalinity ash - [ ] |H
magnesium |
|

total phenols |
flavanoids
nonflav_phenols

proanthocyanins ;
color_intensity |

—
-

I-
hue i ]
0d280/0d315 - I
0 1-1 0 1

A 1

To better understand the axes, we should

consider relationships of multiple attributes

Max

?

increasing”

o | min
Colored by

0.8 alchol + 0.7 ash - 0.5 alcalinity_ash
- 0.5 flavanoids + 0.7 color intensity + proline

(composite variable)

Colored by proline
(univariate)

Do you think linear DR is still explainable
if there are many attributes (e.g., 100)?



Sparse linear DR

Finds a linear projection, P, that has a small number of nonzero elements

» X-P=Y X e R™ griginal data, P € R4 projection matrix, Y € R projected data,
(n: # of instances, d: # of original dimensions, d": # of dimensions after projection)

Representative methods

Sparse PCA
(e.g., Zou et al., “Sparse principal component analysis.” J. Comput. Graph. Stat., 2006.)

Sparse LDA
(e.g., Wen et al., “Robust sparse linear discriminant analysis.” IEEE Trans. Circuits Syst. Video Technol., 2018.)




Sparse linear DR

LDA

Sparse LDA
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Interpretation of dimensionality reduction results

. O
Wine dataset (13D) .
s . . .
alchol malic_acid ash alcalinity_ash magnesium total_phenols flavanoid’ — : : e -
9 Linear discriminant analysis o 200, .
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* |nterpreting based on observed patterns (e.g., clusters) Nonlinear DR
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Nonlinear DR
Does not produce a linear projection from the original to the low-dimensional space

Many commonly used nonlinear methods such as UMAP, t-SNE, Metric MDS do
not provide a parametric mapping from the original to the low-dimensional space

4

Parametric mapping f, : X — Y where @ are parameters

»  Without the parametric mapping, we do not have the information how the original data is

projected onto the low-dimensional space.

|

Instead of understanding the low-dimensional axes, we can try to perform

the interpretation based on visual patterns appeared in a DR result

12



Interpreting by comparing groups/clusters

Food nutrition dataset (12D)

Select attributes with statistical

. asso

selection |
1

(e.q., t-test, histogram intersect
then, visualize them with histog

_

measures

on, LDA):

rams, elc.

o o o =
» o (o] o
1

o
N

Relative frequency

One cluster is selected

Se
ca

ected foods have a medium leve

‘bohydrate but have a lot of protel

of

Relative frequency

Protein
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Existing approaches for comparing groups/clusters

- Univariate focus
- e.g., t-student test-based attribute selection

Marcilio-Jr et al., “Contrastive analysis for scatterplot-based representations of dimensionality reduction.” C&G, 2021.

- Composite variable focus
- e.g., comparative analysis using linear DR

Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.” [EEE TVCG, 2020.

- Classifier-based
- e.9., buillding a simple model that classifies clusters in a DR result

Bibal et al., “IXVC: An interactive pipeline for explaining visual clusters in dimensionality reduction visualizations with
decision trees.” Array, 2021.

¥ Show text labels
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Existing approaches for comparing groups/clusters

- Composite variable focus
- e.g., comparative analysis using linear DR

Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.” [EEE TVCG, 2020.

15



Comparing clusters/groups using linear DR: PCA-based
- Applying PCA for each cluster

(e.g., PCA(n components=1).fit(data[label==0])
- Extract variance-related information of each cluster—variety factors

PC 1 information

alchol ]
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Pe 1 Weights

demo script 16



https://colab.research.google.com/drive/1qRWBkvr3uxOxsFYtU103v3zouHE6-FCb#scrollTo=SNPEVjtTzy0T

Comparing clusters/groups using linear DR: PCA-based

- Applying PCA for each cluster

(e.g., PCA(n components=1).fit(data[label==0])

- Extract variance-related information of each cluster—variety factors
- But, there is no consideration of differences between one cluster and others
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Comparing clusters/groups using linear DR: LDA-based

 Applying linear discriminant analysis (LDA) to distinguish one cluster and others
(e.9., LDA(n components=1).fit(data,

- Find differences between one cluster and others —differentiating factors

Classification
Label 0 and others
with LDA and then

extraction of PC 1

: 30%0 ©
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o .
LU g
. S
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https://colab.research.google.com/drive/1qRWBkvr3uxOxsFYtU103v3zouHE6-FCb#scrollTo=VW5-jwGK5n1m

Comparing clusters/groups using linear DR: PCA-based

Applying linear discriminant analysis (LDA) to distinguish one cluster and others
(e.g9., LDA(n components=1).fit(data, label==0))

- Find differences between one cluster and others —differentiating factors
- But, may lose overall/variance information related each cluster
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ccPCA: Contrasting clusters in PCA

Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.”
IEEE TVCG, 2020.

Extract salient factors in one group relative to others while considering
their distinction—characterizing factors

MNIST Dataset
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ccPCA: Contrasting clusters in PCA

Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.”
IEEE TVCG, 2020.

- Extract salient factors in one group relative to others while considering
their distinction—characterizing factors

. PC 1 information

MNIST Dataset
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ccPCA: Contrasting clusters in PCA

Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.”
IEEE TVCG, 2020.

Extract salient factors in one group relative to others while considering
their distinction—characterizing factors

m | -
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Comparing clusters/groups using linear DR: ccPCA-based

Applying ccPCA to contrast one cluster with others
(e.g., CCPCA(n components=1).fit(data[label==0], data[label!=0]))

- Balance the preservation of variance within a cluster and the distinction from others
»  petter match with t-SNE and UMAP’s algorithms
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https://colab.research.google.com/drive/1qRWBkvr3uxOxsFYtU103v3zouHE6-FCb#scrollTo=IhAl9mTj6tzB

Comparing clusters/groups using linear DR: ccPCA-based

- Applying ccPCA to contrast one cluster with others
(e.g., CCPCA(n components=1).fit(data[label==0], data[label!=0]))

- Balance the preservation of variance within a cluster and the distinction from others
better match with t-SNE and UMAP’s algorithms

4
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Comparing clusters/groups using linear DR
PCA
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total_phenolsH
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Coding exercise (20 minutes)
+ Colab notebook link: http://bit.ly/3ZFOoqv

- Select one dataset

- Apply t-SNE or UMAP
- Label instances shown in the DR result (manually or apply clustering)
- Try multiple different interpretation approaches

1. Univariate statistics-based attribute selection/ranking
2. PCA

3. LDA

4. ccPCA

+ Compare outcomes from the above approaches

20


http://bit.ly/3ZFOoqv

More flexible comparison

Unified linear comparative analysis (ULCA)

Fujiwara et al., “Interactive dimensionality reduction for comparative analysis.” IEEE TVCG, 2022.
https://github.com/takanori-fujiwara/ulca

- More explicitly control of how strongly linear DR separates groups and
preserves/eliminates variance of each group

27


https://github.com/takanori-fujiwara/ulca

Other interpretation approach based on observed patterns

+ Local direction/path

- e.g., checking a correlation between a user-drawn path and each attribute
Chatzimparmpas et al., “t-viSNE: Interactive assessment and interpretation of t-SNE projections.” IEEE TVCG, 2020.

(c) Dimension Correlation

734218596
User —0-0-0-0-0-0-0-0-0—

(c) (a) Points — user-drawn path J\ (b) Comparison of orderings
345128697

oim3 165934827

oim1 412593687

I-SNE result



Interpretation of dimensionality reduction results

Wine dataset (13D)

alchol malic_acid

ash alcalinity_ash magnesium total_phenols flavanoid’

0 1.52
1 0.25
2 0.20
3 1.69
4 0.30

*displayed values are
after the standardization

* |Interpreting from a DR model/mechanism level
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1.11
0.49
1.84

-1.17

-2.49

-0.27

-0.81

0.45

1.91
0.02
0.09
0.93
1.28

0.81
0.57
0.81
2.49
0.81

4

LDA

AXIs 2

® Cultivar 1
Cultivar 2
® Cultivar 3

AXIS 1

Nonlinear DR
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Critical problem of observed-level interpretations

» Comparing (groups of) instances in a DR result does not consider how

the DR method projected the instances

Swiss-roll dataset (3D)

UMAP result

15.0 -

120

10.0 -

=0

2.0

2:0:

0.0

Attr1 strongly contributes to the

P

L

ositional difference in the DR result?

MAP seems to capture the spiral

S

nape related to Attr O and Attr 2.

HEl Attr O
B Attr 1l
Bl Attr 2




Existing approaches for DR model/mechanism-level interpretations

- (Gradient-based

- Approximately derive gradient of eacl

their high-dimensional coo

low-dimensional coordinate with respect to
rdinate and use the gradient to understand the DR result

e.g., Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” Data Mining

and Knowledge Discovery, 2024.

Faust et al., “DimReader: Axis lines that explain non-linear projections.” IEEE TVCG, 2019.

-+ Parametric nonlinear DR
- Use neural networks-based DR optimization to produce a parametric mapping

(fo : X = Y) and then interpret results based on the mapping
e.g., Zang et al., “DMT-EV: An explainable deep network for dimension reduction.” IEEE TVCG, 2024.

- Build a substitute parametric model tha

low-dimensional space or -

=1
1

e.g., Espadoto et al., “UnProjection:
IEEE TVCG, 2023.

_everaging inverse-pro

Mimics a mapping from the original to

rom the low-dimensional to original space

ections for visual analytics of high-dimensional data.”
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Existing approaches for DR model/mechanism-level interpretations

- (Gradient-based

- Approximately derive gradient of each low-dimensional coordinate with respect to

their high-dimensional coordinate and use the gradient to understand the DR result

e.g., Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” Data Mining
and Knowledge Discovery, 2024.

Faust et al., “DimReader: Axis lines that explain non-linear projections.” IEEE TVCG, 2019.
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Gradient-based interpretation

Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.”
Data Mining and Knowledge Discovery, 2020.

t-SNE’s objective function
arg min KL—Divergence(P, Q)

Y
P: Similarities in the original space Q: Similarities in the low-dimensional space
1 2\—1
Pij = 5Py +Pj) .- I+ 1ly; = y;ll5)
/. NEE
o2 lIx—x[1207 oy 2oL+, =y )
Pjii =

Y, e 2lxxelo?
- Apply Gould et al.’s approximation formula to derive the gradient of the
low-dimensional coordinate, y;, with respect to the original data, X;

Gould et al., “On differentiating parameterized argmin and argmax problems with application to bi-level optimization.” arXiv, 2016.

Vy (X ¥i) =4 Z(P, —g)(1+ 1y, = y;115)7 v = ¥))
JFl
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Gradient-based interpretation

Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.”
Data Mining and Knowledge Discovery, 2020.

+ Complementary tools
- Global feature importance

Compute attribute importances by summing the lengths of the gradient vectors at the
coordinates of all instances in the DR result

'3.:‘: Alc
So% o . .

e N Malic acid

ap

< Ash

$ . . oo Alcal. of ash

o 5’-:' e Magnesium

.o, Ttl phenols

® Label -1 M .,-. Flavanoids

| ® takb)ell? ":"'g‘.ig'.'s. Nonflav. phenols

ape

® Label 2 4 ..(; Pr.oanth.

- - - Col. intens.

t-SNE result Hue

OD280/0D315

Proline

0.0 0.5 1.0

Global feature importance

34



Gradient-based interpretation

Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.”

Data Mining and Knowledge Discovery, 2020.

- Complementary tools KD o
. o, %
- Global feature importance 3 2%
- Vector field visualization for a selected attribute [@Leber "',,,.g )
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Gradient-based interpretation

Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.”

Data Mining and Knowledge Discovery, 2020.
+ Complementary tools

- Explanation scope from a selected instance

Based on similarities of the gradient vectors
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Gradient-based interpretation

Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.”
Data Mining and Knowledge Discovery, 2020.

S
- GComplementary tools '?:3
- Global feature importance ’?,,.y .
- Vector field visualization for a selected attribute :""“""".8
- Explanation scope from a selected instance oo i
- Cluster-level feature importance (newly made for this tutorial)
The sum of each cluster’s gradient vector lengths
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Coding exercise (20 minutes)
- Colab notebook link: https://bit.ly/4AKCNPWD

- Select one dataset

- Apply t-SNE

- Apply the gradient-based interpretation method
- Use the complementary visualizations to interpret the t-SNE result

- Compare the interpretation result with the previous coding exercise
results (e.g., PCA)
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https://bit.ly/4kCNPWD

Existing approaches for DR model/mechanism-level interpretations

Parametric nonlinear DR
- Use neural networks-based DR optimization to produce a parametric mapping

( fe : X = Y) and then interpret results based on the mapping
e.g., Zang et al., “DMT-EV: An explainable deep network for dimension reduction.” IEEE TVCG, 2024.

- Build a substitute parametric model that mimics a mapping from the original to

low-dimensional space or from the low-dimensional to original space
e.g., Espadoto et al., “UnProjection: Leveraging inverse-projections for visual analytics of high-dimensional data.”

IEEE TVCG, 2023.
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Parametric nonlinear DR

(typically) uses neural networks to have a parametric mapping from the
original space to the low-dimensional space

- Parametric UMAP, parametric t-SNE, etc.

Sainburg et al., “Parametric UMAP embeddings for representation and semisupervised learning.” Neural Computation, 2021.
Van der Maaten, “Learning a parametric embedding by preserving local structure.” PMLR, 2009.
Hinterreiter et al., “ParaDime: A framework for parametric dimensionality reduction.” CGF, 2023.

Parametric DR
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_ )
a=1(x,vy, z) .
b =g(x,y, z)

Due to the parametric mapping, we can apply various existing
interpretation methods designed for deep learning

- e.g., integ rated gradients Sundararajan et al., “Axiomatic Attribution for Deep Networks.” arXiv, 2017
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Remaining challenges

- Evaluation
- How can we say which interpretation methods are better than others?
- How can we ensure that we interpret a DR result well”

- Limited existing work on the DR model/mechanism-level interpretations

- Limited availability of source code
(N0 source code, too old to install, no documentation/examples, etc.)

- Many more...
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What you learned today

Fundamentals: Interpretation of dimensionality reduction (DR) results

- Linear DR
- Axis level Tutorial Materials

Fga0
- Observed-pattern level } 'ii' Ilr
Univariate focus - .ﬁﬂ -
Composite variable focus "o n
Classifier-based
Local pattern correlation

- Nonlinear DR

- Model-mechanism level

Gradient-based
Parametric nonlinear DR

https://hyeonword.com/dr-tutorial/

Practices: Interpretations with existing libraries
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Python libraries

- PCA, LDA, t-SNE: Scikit-learn https://scikit-learn.org/
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