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What you will learn today
• Fundamentals: Interpretation of dimensionality reduction (DR) results 


- Linear DR

‣ Axis level 

- Nonlinear DR

‣ Observed-pattern level 

• Univariate focus

• Composite variable focus

• Classifier-based

• Local pattern correlation


‣ Model-mechanism level 
• Gradient-based

• Parametric nonlinear DR


• Practices: Interpretations with existing libraries
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Tutorial Materials

https://hyeonword.com/dr-tutorial/



• Interpreting a lower-dimensional space 
• Interpreting based on observed patterns (e.g., clusters) 
• Interpreting from a DR model/mechanism level

Interpretation of dimensionality reduction (DR) results
Wine dataset (13D)
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How are they separated? 
What are their differences?

*displayed values are  
after the standardization
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Linear DR
Nonlinear DR
Nonlinear DR

No single best way for the interpretation so far (especially, for nonlinear DR)
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No single best way for the interpretation so far (especially, for nonlinear DR)



• Representative methods

- Principal component analysis (PCA) [Pearson,1901]: Preserves data variance as much as possible 
- Linear discriminant analysis (LDA) [Fisher, 1936]: Maximizes the separation of predefined groups
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Linear DR

PCA

LDAGroup 1
Group 2
Group 3

Project data  
to 2D

Project data  
to 2D

• Finds a linear projection from the original dimensions to low-dimensional axes
    : original data, : projection matrix, : projected data, 

                         ( : # of instances, : # of original dimensions, : # of dimensions after projection)
X ⋅ P = Y X ∈ ℝn×d P ∈ ℝd×d′￼ Y ∈ ℝn×d′￼

n d d′￼



Interpreting the axes
Wine dataset (13D)

Axis 1

Ax
is

 2

Cultivar 1
Cultivar 2
Cultivar 3

YX P =⋅

=⋅

The projection matrix contains the information of the axes
For example, Axis 1 is generated by  
-0.20 alcohol + 0.11 malic_acid - 0.06 ash … 

Linear dimensionality reduction
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LDA result



Interpreting the axes

Axis 1

Ax
is

 2

Cultivar 1
Cultivar 2
Cultivar 3

Axis 1 Axis 2
Visualize

Axes 1 and 2 should be highly influenced 
by flavanoids and proline, respectively
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LDA result



Interpreting the axes
Axis 1 Axis 2

To better understand the axes, we should 
consider relationships of multiple attributes

8

Do you think linear DR is still explainable  
if there are many attributes (e.g., 100)?

Colored by proline  
(univariate)

max

min
Colored by  

0.8 alchol + 0.7 ash - 0.5 alcalinity_ash 
 - 0.5 flavanoids + 0.7 color_intensity + proline 

(composite variable)

in
cr

ea
si

ng
?



• Representative methods

- Sparse PCA 

(e.g., Zou et al., “Sparse principal component analysis.” J. Comput. Graph. Stat., 2006.) 
- Sparse LDA  

(e.g., Wen et al., “Robust sparse linear discriminant analysis.” IEEE Trans. Circuits Syst. Video Technol., 2018.)

• Finds a linear projection, , that has a small number of nonzero elements 

‣     : original data, : projection matrix, : projected data, 

                         ( : # of instances, : # of original dimensions, : # of dimensions after projection)

P
X ⋅ P = Y X ∈ ℝn×d P ∈ ℝd×d′￼ Y ∈ ℝn×d′￼

n d d′￼
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Sparse linear DR



Sparse linear DR
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LDA

Sparse LDA



• Interpreting a lower-dimensional space 
• Interpreting based on observed patterns (e.g., clusters) 
• Interpreting from a DR model/mechanism level

Interpretation of dimensionality reduction results
Wine dataset (13D)
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Linear DR
Nonlinear DR
Nonlinear DR



• Does not produce a linear projection from the original to the low-dimensional space
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Nonlinear DR

• Many commonly used nonlinear methods such as UMAP, t-SNE, Metric MDS do 
not provide a parametric mapping from the original to the low-dimensional space

‣ Parametric mapping   where  are parameters 
‣ Without the parametric mapping, we do not have the information how the original data is 

projected onto the low-dimensional space.

fθ : X → Y θ

Instead of understanding the low-dimensional axes, we can try to perform 
the interpretation based on visual patterns appeared in a DR result



Interpreting by comparing groups/clusters
Food nutrition dataset (12D)

t-SNE result Carbohydrate
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Protein

Selected foods have a medium level of 
carbohydrate but have a lot of protein

One cluster is selected

Lasso 
selection
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Select attributes with statistical measures  
(e.g., t-test, histogram intersection, LDA); 
then, visualize them with histograms, etc.



Existing approaches for comparing groups/clusters
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• Univariate focus

- e.g., t-student test-based attribute selection 

Marcílio-Jr et al., “Contrastive analysis for scatterplot-based representations of dimensionality reduction.” C&G, 2021.

• Composite variable focus

- e.g., comparative analysis using linear DR 

Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.” IEEE TVCG, 2020.

• Classifier-based

- e.g., building a simple model that classifies clusters in a DR result 

Bibal et al., “IXVC: An interactive pipeline for explaining visual clusters in dimensionality reduction visualizations with 
decision trees.” Array, 2021.



Existing approaches for comparing groups/clusters
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• Univariate focus

- e.g., t-student test-based attribute selection 

Marcílio-Jr et al., “Contrastive analysis for scatterplot-based representations of dimensionality reduction.” C&G, 2021.


• Composite variable focus

- e.g., comparative analysis using linear DR 

Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.” IEEE TVCG, 2020.


• Classifier-based

- e.g., building a simple model that classifies clusters in a DR result 

Bibal et al., “IXVC: An interactive pipeline for explaining visual clusters in dimensionality reduction visualizations with 
decision trees.” Array, 2021.



Label 0
Label 1
Label 2

Label -1

After clustering 
(e.g., with DBSCAN)

Comparing clusters/groups using linear DR: PCA-based
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• Applying PCA for each cluster  
(e.g., PCA(n_components=1).fit(data[label==0])

PCA to  
extract PC 1

PC 1 information

Weights

demo script

- Extract variance-related information of each cluster—variety factors

t-SNE result 
(Wine dataset)

https://colab.research.google.com/drive/1qRWBkvr3uxOxsFYtU103v3zouHE6-FCb#scrollTo=SNPEVjtTzy0T
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• Applying PCA for each cluster  
(e.g., PCA(n_components=1).fit(data[label==0])


- Extract variance-related information of each cluster—variety factors

Label 0
Label 1
Label 2

Label -1

t-SNE result after  
clustering

PCA to  
extract PC 1

- But, there is no consideration of differences between one cluster and others

Comparing clusters/groups using linear DR: PCA-based
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Label 0
Label 1
Label 2

Label -1

t-SNE result after  
clustering

Classification  
Label 0 and others 

with LDA and then 
extraction of PC 1

• Applying linear discriminant analysis (LDA) to distinguish one cluster and others   
(e.g., LDA(n_components=1).fit(data, label==0))

PC 1 information

Weights
demo script

- Find differences between one cluster and others—differentiating factors

Comparing clusters/groups using linear DR: LDA-based

https://colab.research.google.com/drive/1qRWBkvr3uxOxsFYtU103v3zouHE6-FCb#scrollTo=VW5-jwGK5n1m
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• Applying linear discriminant analysis (LDA) to distinguish one cluster and others  
(e.g., LDA(n_components=1).fit(data, label==0))

Label 0
Label 1
Label 2

Label -1

t-SNE result after  
clustering

LDA to  
extract PC 1

- But, may lose overall/variance information related each cluster 
- Find differences between one cluster and others—differentiating factors

Comparing clusters/groups using linear DR: PCA-based



ccPCA: Contrasting clusters in PCA 
Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.” 
IEEE TVCG, 2020.
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• Extract salient factors in one group relative to others while considering 
their distinction—characterizing factors

MNIST Dataset
70,000  
hand-written digits

28 pixels x 28 pixels 
  = 784 dimensions



ccPCA: Contrasting clusters in PCA 
Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.” 
IEEE TVCG, 2020.
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• Extract salient factors in one group relative to others while considering 
their distinction—characterizing factors

MNIST Dataset

ccPCA  
784D to 1D

PC 1 information

Pi
xe

l I
D

Weights

heatmap

LDA
PCA

ccPCA
α = 1.34

α = 1.06

α = 1.34

Digit 8Digit 5Digit4

1-1

feature’s contribution

-1 1
Weights



ccPCA: Contrasting clusters in PCA 
Fujiwara et al., “Supporting analysis of dimensionality reduction results with contrastive learning.” 
IEEE TVCG, 2020.
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• Extract salient factors in one group relative to others while considering 
their distinction—characterizing factors

PCA LDA ccPCA PCA LDA ccPCA
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• Applying ccPCA to contrast one cluster with others  
(e.g., CCPCA(n_components=1).fit(data[label==0], data[label!=0]))


- Balance the preservation of variance within a cluster and the distinction from others

‣ better match with t-SNE and UMAP’s algorithms 

Label 0
Label 1
Label 2

Label -1

t-SNE result after  
clustering

ccPCA to  
extract PC 1

demo script

Comparing clusters/groups using linear DR: ccPCA-based

https://colab.research.google.com/drive/1qRWBkvr3uxOxsFYtU103v3zouHE6-FCb#scrollTo=IhAl9mTj6tzB
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Label 0
Label 1
Label 2

Label -1

t-SNE result after  
clustering

ccPCA to  
extract PC 1

Comparing clusters/groups using linear DR: ccPCA-based
• Applying ccPCA to contrast one cluster with others  

(e.g., CCPCA(n_components=1).fit(data[label==0], data[label!=0]))

- Balance the preservation of variance within a cluster and the distinction from others

‣ better match with t-SNE and UMAP’s algorithms 



Comparing clusters/groups using linear DR
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PCA

LDA

ccPCA



Coding exercise (20 minutes)
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• Colab notebook link: http://bit.ly/3ZFOoqv  

• Select one dataset

• Apply t-SNE or UMAP

• Label instances shown in the DR result (manually or apply clustering) 

• Try multiple different interpretation approaches


1. Univariate statistics-based attribute selection/ranking

2. PCA

3. LDA

4. ccPCA


• Compare outcomes from the above approaches

http://bit.ly/3ZFOoqv


More flexible comparison
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• Unified linear comparative analysis (ULCA) 
Fujiwara et al., “Interactive dimensionality reduction for comparative analysis.” IEEE TVCG, 2022. 
https://github.com/takanori-fujiwara/ulca 


- More explicitly control of how strongly linear DR separates groups and  
preserves/eliminates variance of each group

https://github.com/takanori-fujiwara/ulca


Other interpretation approach based on observed patterns
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• Local direction/path

- e.g., checking a correlation between a user-drawn path and each attribute 

Chatzimparmpas et al., “t-viSNE: Interactive assessment and interpretation of t-SNE projections.” IEEE TVCG, 2020.

t-SNE result



• Interpreting a lower-dimensional space 
• Interpreting based on observed patterns (e.g., clusters) 
• Interpreting from a DR model/mechanism level

Interpretation of dimensionality reduction results
Wine dataset (13D)

Axis 1

Ax
is

 2

Cultivar 1
Cultivar 2

Cultivar 3

Linear discriminant analysis 
LDA

*displayed values are  
after the standardization
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Linear DR
Nonlinear DR
Nonlinear DR



Critical problem of observed-level interpretations
• Comparing (groups of) instances in a DR result does not consider how 

the DR method projected the instances

x1

x2

Swiss-roll dataset (3D)
UMAP result ( )x1−x2

Attr1 strongly contributes to the 
positional difference in the DR result? 
 
UMAP seems to capture the spiral 
shape related to Attr 0 and Attr 2.



Existing approaches for DR model/mechanism-level interpretations
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• Gradient-based

- Approximately derive gradient of each low-dimensional coordinate with respect to 

their high-dimensional coordinate and use the gradient to understand the DR result 
e.g., Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” Data Mining 
and Knowledge Discovery, 2024. 
Faust et al., “DimReader: Axis lines that explain non-linear projections.” IEEE TVCG, 2019.

• Parametric nonlinear DR

- Use neural networks-based DR optimization to produce a parametric mapping 

( )  and then interpret results based on the mapping 
e.g., Zang et al., “DMT-EV: An explainable deep network for dimension reduction.” IEEE TVCG, 2024.
fθ : X → Y

- Build a substitute parametric model that mimics a mapping from the original to 
low-dimensional space or from the low-dimensional to original space 
e.g., Espadoto et al., “UnProjection: Leveraging inverse-projections for visual analytics of high-dimensional data.”  
IEEE TVCG, 2023.



Existing approaches for DR model/mechanism-level interpretations
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Faust et al., “DimReader: Axis lines that explain non-linear projections.” IEEE TVCG, 2019.
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( )  and then interpret results based on the mapping 
e.g., Zang et al., “DMT-EV: An explainable deep network for dimension reduction.” IEEE TVCG, 2024.
fθ : X → Y
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IEEE TVCG, 2023.



Gradient-based interpretation 
Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” 
Data Mining and Knowledge Discovery, 2020.
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• t-SNE’s objective function
arg min

Y
KL−Divergence(P, Q)

: Similarities in the original spaceP : Similarities in the low-dimensional spaceQ

• Apply Gould et al.’s approximation formula to derive the gradient of the 
low-dimensional coordinate, , with respect to the original data, yi xi
Gould et al., “On differentiating parameterized argmin and argmax problems with application to bi-level optimization.” arXiv, 2016.



Gradient-based interpretation 
Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” 
Data Mining and Knowledge Discovery, 2020.
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• Complementary tools

- Global feature importance


‣ Compute attribute importances by summing the lengths of the gradient vectors at the 
coordinates of all instances in the DR result

Label 0
Label 1
Label 2

Label -1

t-SNE result

Global feature importance



Gradient-based interpretation 
Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” 
Data Mining and Knowledge Discovery, 2020.
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• Complementary tools

- Global feature importance

- Vector field visualization for a selected attribute

Alc. HueCol. intens.

Label 0
Label 1
Label 2

Label -1

Vector field visualizations



Gradient-based interpretation 
Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” 
Data Mining and Knowledge Discovery, 2020.
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• Complementary tools

- Global feature importance

- Vector field visualization for a selected attribute

- Explanation scope from a selected instance


‣ Based on similarities of the gradient vectors 

Alc. HueCol. intens.

Label 0
Label 1
Label 2

Label -1

Vector field visualizations Explanation scope visualizations

Selected instance



Gradient-based interpretation 
Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” 
Data Mining and Knowledge Discovery, 2020.

37

• Complementary tools

- Global feature importance

- Vector field visualization for a selected attribute

- Explanation scope from a selected instance

- Cluster-level feature importance (newly made for this tutorial)


‣ The sum of each cluster’s gradient vector lengths 

Label 0
Label 1
Label 2

Label -1



Coding exercise (20 minutes)
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• Colab notebook link: https://bit.ly/4kCNPWD  

• Select one dataset

• Apply t-SNE

• Apply the gradient-based interpretation method

• Use the complementary visualizations to interpret the t-SNE result

• Compare the interpretation result with the previous coding exercise 

results (e.g., PCA)

https://bit.ly/4kCNPWD


Existing approaches for DR model/mechanism-level interpretations
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• Gradient-based

- Approximately derive gradient of each low-dimensional coordinate with respect to 

their high-dimensional coordinate and use the gradient to understand the DR result 
e.g., Corbugy et al., “Gradient-based explanation for non-linear non-parametric dimensionality reduction.” Data Mining 
and Knowledge Discovery, 2024. 
Faust et al., “DimReader: Axis lines that explain non-linear projections.” IEEE TVCG, 2019.


• Parametric nonlinear DR

- Use neural networks-based DR optimization to produce a parametric mapping 

( )  and then interpret results based on the mapping 
e.g., Zang et al., “DMT-EV: An explainable deep network for dimension reduction.” IEEE TVCG, 2024.


- Build a substitute parametric model that mimics a mapping from the original to 
low-dimensional space or from the low-dimensional to original space 
e.g., Espadoto et al., “UnProjection: Leveraging inverse-projections for visual analytics of high-dimensional data.”  
IEEE TVCG, 2023.

fθ : X → Y



Parametric nonlinear DR
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• (typically) uses neural networks to have a parametric mapping from the 
original space to the low-dimensional space


- Parametric UMAP, parametric t-SNE, etc. 
 

Sainburg et al., “Parametric UMAP embeddings for representation and semisupervised learning.” Neural Computation, 2021. 
Van der Maaten, “Learning a parametric embedding by preserving local structure.” PMLR, 2009. 
Hinterreiter et al., “ParaDime: A framework for parametric dimensionality reduction.” CGF, 2023.

• Due to the parametric mapping, we can apply various existing 
interpretation methods designed for deep learning


- e.g., integrated gradients Sundararajan et al., “Axiomatic Attribution for Deep Networks.” arXiv, 2017



Remaining challenges
• Evaluation 

- How can we say which interpretation methods are better than others? 
- How can we ensure that we interpret a DR result well? 

• Limited existing work on the DR model/mechanism-level interpretations


• Limited availability of source code 
(no source code, too old to install, no documentation/examples, etc.) 

• Many more…
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What you learned today
• Fundamentals: Interpretation of dimensionality reduction (DR) results 


- Linear DR

‣ Axis level 

- Nonlinear DR

‣ Observed-pattern level 

• Univariate focus

• Composite variable focus

• Classifier-based

• Local pattern correlation


‣ Model-mechanism level 
• Gradient-based

• Parametric nonlinear DR


• Practices: Interpretations with existing libraries
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Tutorial Materials

https://hyeonword.com/dr-tutorial/
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