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Agenda

* Dimensionality Reduction - Overview
 PCA, MDS
* Modern nonlinear DR:
* t-SNE, UMAP

* Quality Assessment
* Distortion types
* Quality metrics
* Visualizing quality metrics

From: https://towardsdatascience.com/how-exactly-umap-works-13e3040e 1668
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Dimensionality Reduction

Modern, non-linear
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Dimensionality Reduction

* For a simple abstraction, think of DR as a function:

#0#

* The input 1s a matrix of n elements (rows) by p features (columns)

* The output has the same number of rows (n), but g features (q < p)
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Principal Components Analysis (PCA)

* Goal: Maximize the explained variance.
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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Multidimensional Scaling (MDS)

Correlations between crime rates in the U.S. states

larceny
rape .
o
assaM 4 la
o> e OUrgiary
murder
robbery °
¢ auto theft

& Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. Springer Science & Business Media.

Crime No.| 1 2 3 4 5 6 7
Murder 1 [1.00 0.52 0.34 0.81 0.28 0.06 0.11
Rape 2 10.52.1.00 0.55 0.70 0.68 0.60 0.44
Robbery | 3 [0.34 0.55 1.00 0.56 0.62 0.44 0.62
Assault 4 1.00 0.52 0.32 0.33
Burglary | 5 0.52 1.00 0.80 0.70
Larceny 6 0.320:80)1.00 0.55
Auto theft | 7 0.33 0.70 0.55 1.00
Borg, I.,
Linneeus University (8] £ = 1 [ uucs,

and Groenen, P.
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Multidimensional Scaling (MDS)

General procedure (using gradient descent):

1. Start with an 1nitial configuration of R? (random/PCA /orthogonal)
2. Evaluate a chosen cost function.

3. Ifthe cost is low enough (or the maximum number of iterations was reached),
stop.

4. Move each point slightly (i.e., according to the learning rate) towards the
direction where the cost function 1s minimized.

5. Go to 3.
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Multidimensional Scaling (MDS)

Example:

* 0;; = color similarities

 Random initial configuration in R*

* Each iteration moves each point slightly in the
direction of a lower cost

* The order in which the points are moved 1s

arbitrary e
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Multidimensional Scaling (MDS)

Example:

* 0;; = color similarities
 Random initial configuration in R*

* Each iteration moves each point slightly in the

direction of a lower cost \ Gradient
\
* The order in which the points are moved is ’« e
arbitrary e
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Multidimensional Scaling (MDS)

Example:

* 0;; = color similarities
 Random initial configuration in R*

* Each iteration moves each point slightly in the
direction of a lower cost

* The order in which the points are moved 1s
arbitrary
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Multidimensional Scaling (MDS)

Example:

O

* 0;; = color similarities

 Random initial configuration in R? 9 Learning Rate
* Each iteration moves each point slightly in the
direction of a lower cost \ Gradient
\
* The order in which the points are moved is ’« e
arbitrary e
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Multidimensional Scaling (MDS)

Example: :
Note: in every step, there are

both attractive and repulsive Q

forces acting on each point.

* 0;; = color similarities
 Random initial configuration in R?

* Each iteration moves each point slightly in the G
direction of a lower cost

* The order in which the points are moved is
arbitrary

SUED
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Multidimensional Scaling (MDS)

Example:

* 0;; = color similarities O
 Random initial configuration in R*

* Each iteration moves each point slightly in the G
direction of a lower cost

* The order in which the points are moved 1s

. O
arbitrary e
7

And so on...
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t-SNE (t-Dist. Stochastic Neighbor Embedding)

Links:

* https://observablehq.com/@robert-browning/t-sne-t-distributed-stochastic-neighbor-
embedding

* https://distill.pub/2016/misread-tsne/
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UMAP (Uniform Manifold Approx. and Proj.)

Links:

* https://pair-code.github.io/understanding-umap/

* https://umap-learn.readthedocs.io/en/latest/interactive viz.html

St ]
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https://pair-code.github.io/understanding-umap/
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Modern DR: Comparison

PCA t-SNE UMAP PaCMAP
Classes
e O
e 1
e 2
3
4
5
6
o 7
e 8
9

MNIST

Huang, H., Wang, Y., Rudin, C., & Browne, E. P. (2022). Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization. Communications biology, 5(1), 719.
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Modern DR: Comparison

Laplacian Eigenmaps  , Stronger attraction Stronger repulsion t-SNE (0= 1)
0 =100 p=30 p=4 p=3

Eig 2

\ o

/' !
ForceAtlas2 UMAP

(s

Béhm, J. N., Berens, P., & Kobak, D. (2022). Attraction-repulsion spectrum in neighbor embeddings. Journal of Machine Learning Research, 23(95), 1-32.

Eig 9

Eig 7 Eig 12
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Modern DR: Comparison

Huang, H., Wang, Y.,

Linnaeus University

Rudin, C., & Browne, E.
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Modern DR: Comparison

« e t-SNE(perplexity=10) t-SNE(perplexity=125) LargeVis(perplexity=125) UMAP(n_neighbors=10)  TriMap(n_inliers=10)
Original Mammoth

= A

T 150 t-SNE(perplexity=250) LargeVis(per\plexity=;50) UMAP(n_neighbors=20) PaCMAP(default)
- 100 - ) (

50 oy

0 780
 -50 F o g
F~100 Wm , .
-—150 i .;U{._;,: ;

t-SNE(perplexity=500) LargeVis(perplexity=500) UMAP(n_neighbors=40)  TriMap(n_inliers=40)

150

Huang, H., Wang, Y., Rudin, C., & Browne, E. P. (2022). Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization. Communications biology, 5(1), 719.
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Modern DR: Comparison

Espadoto, M., Martins, R

Linnaeus University
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(2019). Toward a quantitative survey of dimension reduction techniques. IEEE transactions on visualization and computer graphics, 27(3), 2153-2173.



“All models are wrong, but some are useful.”
Box, 1978
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“All models are wrong, but some are useful.”
Box, 1978

“...with the wrong DR method, information about the high-
dimensional relationships between points can be lost when
projecting onto a 2D or 3D space.”

Rudin et al., 2022
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Distortions 1n dimensionality reduction

* Dimensionality reduction algorithms depict a portion of complex HD features

* Different algorithms represents different portions
* i.e., examines HD data in different perspectives

* ¢.g., even a 3D cube cannot be exactly projected m 2D space!!
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Distortions 1n dimensionality reduction

* High-dimensional data is extremely complex and intertwined
* Distortion inherently occurs while reducing dimensionality

* LD embeddings may not accurately depict the features of original HD data

* May degrade the credibility of visual analysis based on dimensionality reduction
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Be aware of distortions!!

. (c) Global distances between clusters are interpreted
 Practitioners often as their actual high-dimensional distances, casting

disregard SllCh threat doubt on the credibility of the interpretations

|
b
H,~ F':' 40 4 0 e
| ol 20 - Interneuron$ 2 ® Fax
» sl A | @ ras
r,. y2 L3 3! r ” ® soxz
| E Hd : 0 4 - ) ® Ascit
L . : L f
-20
.{ y
-40 4 :
-50 -25 0 25
Alibert et al. Ocasio et al.

Cashman, Dylan, et al. "A critical analysis of the usage of dimensionality reduction in four domains." IEEE Transactions on Visualization and Computer Graphics (2025).
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Quality Assessment

* How can we determine the quality of a

projection?
* How about... the remaining error? C =Y KL(P||0) EEp”log ”
! JIt
(t-SNE)
* Examples:

* t-SNE: KLD
« UMAP: Cross-entropy CE(X,Y) = ZZ [pz-j(X) log(z jii,{;) = pij(X))log( 1 :Z jgf)) )J
J (UMAP)

* Remember: entirely unsupervised.

e
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Quality Assessment

* How can we determine the quality of a
projection?
* How about... the remaining error?

* Examples:
* t-SNE: KLD
* UMAP: Cross-entropy

* Remember: entirely unsupervised.
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* Problems:
* Not very meaningful / interpretable
* Not comparable between methods

* Solution:
* Propose method-independent metrics



Types of Distortions

* HD space 1s complex; cannot be explained in a single perspective

* There exists various ways to “explain” or “define” distortions
* Stretching/Compression
* Missing Neighbors/False Neighbors
* Missing Groups/False Groups
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Stretching/Compression

* Stretching
 Distances between points became larger in the low-dimensional space compared to
the high-dimensional space
e Compression

* Distances between points became shorter in the low-dimensional space compared
to the high-dimensional space

' ] . " ’ ’ . L
1 1 N [ r . ’
I T 1 A [ ] T Y
Al ' 1 [ '] '

Compression Stretching
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Missing Neighbors & False Neighbors

* Missing Neighbors
* Neighbors 1n the original space are no longer neighbors in the embedding

* False Neighbors
* Neighbors that can be seen in the embedding are actually not neighbors in the

original space
- [
Missing Neighber
AO®
*
NS

%@

~~aliﬁ(Neighbor

High-D Low-D
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Missing Neighbors & False Neighbors

* Missing Neighbors
* Neighbors 1n the original space are no longer neighbors in the embedding

* False Neighbors

* Neighbors that can be seen in the embedding are actually not neighbors in the
original space

* A seminal distortion type defined in the literature
* However, lacks the capability to explain complex cluster-level distortions

o “Extended” definition of distortions i1s needed...
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Missing Groups & False Groups

* Missing Groups
* A cluster in the original space is split into multiple subclusters in the embedding

* False Groups

* A cluster that can be seen in the embedding actually consists of separated
subclusters in the original space

; b... -
: False Groups;:
2 2L Missing Groups e, \> e
8 2 &N £ N / \
[ St Sty | Lol \ 3 I |
. NS e I &y
\-\ _\/\ 4 e’ \ \~~_'/ . £ /
High-D Low-D| [High-D Low-D

C
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Distortion types - Summary

* Stretching/Compression
* Distortions 1n pairwise distances

* Missing/False Neighbors
* Distortions in local neighborhood structure

* Missing/False Groups
e Distortions in cluster structure
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Quality Metrics and Distortions

* Stretching/Compression
* Global metrics

* Missing/False Neighbors
e Local metrics

* Missing/False Groups
* Cluster-level metrics
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Global Metrics

* Examines the extent to which pairwise distances of the original high-dimensional data
are distorted in the low-dimensional space

@ Shepard
. . § /diagram
 DTM, Shepard index, Stress/Strain... 3
© 'l
5
S y
HD pairwise distances LD pai/rwise distances
\\ I
N
(6 (xi,x;) — 8 (i,¥5))?

5(x,g,xj)2

Stress = Z
\

i=1,j=1

Output distance

Lespinats, Sylvain, and Michaé&l Aupetit. "CheckVviz: Sanity Check and Topological Clues for Linear and Non-Linear Mappings." Computer Graphics Forum. Vol. 3@. No. 1. Oxford, UK: Blackwell Publishing Ltd, 2011.
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I.ocal Metrics

* Trustworthiness & Continuity (T&C)
* Mean relative rank errors (MRRE)
* Local Continuity Meta Criterion (LCMC)

* The most common type of distortion metrics

* Widely used in literature
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Trustworthiness and Continuity

Pij - K) = 1—G— D (k—K)qy,

lclnk of j as a neighbor (k.he M—K
of i in the input space input-space ranks k=K and
2 output-space ranks I<=K

(

nk\ K

2 N

. . K)—l—— (Tji 11— (I — K)qy,

i H e arameter: nel ththOd Slze lz]: E1KZHK ‘{rdnk UT]dsanmghbofG‘K[kf}EZl:R .
Jevi\m, K

of i in the output space input-space ranks k<=K and
output-space ranks I=K

. N
e Rank-based metrics M) = 1 — iz
. . i=1 je
« Don’t consider distances, only ranks :

* These are probably the most used K
. n:\v.
metrlcs nowadays poi:tsjthalt are

neighbors of i in the

{ NK(ZN — 3K — ]) if K(NXZ‘ output space but not

in the input space

N(N—-K)YN—-K—-1) if K=N/2
1!!( \‘r]f(
I

points j that are
neighbors of i in the
input space but notin
the output space

Venna, J., Peltonen, J., Nybo, K., Aidos, H., & Kaski, S. (2010). Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research, 11(2).
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I.ocal Metrics

* Common workflow
* Find k-Nearest Neighbor of each point in the HD space A
* Find k-Nearest Neighbor of each point in the LD space B

Check the difference between A and B

Input space

k NN in HD but not in LD a Missing Neighbors
k NN in LD but not in HD a False Neighbors

Output space (visualization)

Venna, J., Peltonen, J., Nybo, K., Aidos, H., & Kaski, S. (2010). Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journa

Linnzeus University soha g,

1 of Machine

miss false
positives
Learning Research, 11(2).




Cluster-Level Metrics

* Steadiness & Cohesiveness

* Label-Trustworthiness and Continuity

* Measures how well “clusters” in the high-dimensional space are depicted in low-
dimensional projections as clusters, and vice versa
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Cluster-Level Metrics

* Steadiness & Cohesiveness

Quantify Dispersion Cluster extraction

‘ ‘ < N Aggregation
(make average)

Cluster extraction Quantify Dispersion

Jeon, Hyeon, et al. "Measuring and explaining the inter-cluster reliability of multidimensional projections." IEEE Transactions on Visualization and Computer Graphics 28.1 (2021): 551-561.
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Cluster-Level Metrics

 Label-Trustworthiness & Continuity 23456789

QA3Ygse7¢89
*>24669% 69
23456789 . SCOTC

) Quantify the degree

input 23456759 of separability
234567839
2345601819

Examine the
Class Labels consistency final score

input 3B &
g | * ‘ score

Quantify the degree

s ,*' of separability

Jeon, Hyeon, et al. "Classes are not clusters: Improving label-based evaluation of dimensionality reduction." IEEE Transactions on Visualization and Computer Graphics 30.1 (2023): 781-791.
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Quality Assessment: Visualization

fashion_mnist har cnae9 coil20

. . > _'; '* n :' ‘:~ . “4“‘\9
* Metric scores are useful for comparison, T W . 'S e “i
but nOt Very informative: 0.0Q;é.M 0.05 121—‘0_28 0.11 o (.43 0.15 o 0.50

* Are the errors spread out evenly
around the projection?

» For that, we need to visualize them.

* Identify trustworthy (and W ol el
untrustworthy) areas of the layout T "

* Guide the visual analysis e e
"4

Espadoto, M., Martins, R. M., Kerren, A., Hirata, N. S., & Telea, A. C. (2019). Toward a quantitative survey of dimension reduction techniques. IEEE transactions on visualization and computer graphics, 27(3), 2153-2173.
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Quality Assessment: Visualization

a b

high e?e&"

low &8

A@D

d" (a;,9;)

d" (pi,p;)

C.: — -
Y] max;; d" (q;,q;)

max; ; d" (pi :pj)

Martins, R. M., Coimbra, D. B., Minghim, R., & Telea, A. C. (2014). Visual analysis of dimensionality reduction quality for parameterized projections. Computers & Graphics, 41, 26-42.

SEOQUL NATIONAL UNIVERSITY
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uality Assessment: Visualization

Martins,

Linnaeus University

R.

> z _?;;: high efalse

low efalse
Z 1 efa.lse
1<k<
P dxBy) 1B
Z 1
1<k<
3 a(xEy) B

low emissing hiah emissing
Bundles
low %" high e&&"

Background

missing

€; = max,; (eij, 0)

M., Coimbra, D. B., Minghim, R., & Telea, A. C. (2014). Visual analysis of dimensionality reduction quality for parameterized projections. Computers & Graphics, 41, 26-42.
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Quality Assessment: Visualization

discontinuities

low eMissing high Mmissing
[E— ]

Martins, R. M., Coimbra, D.

Y

i

i)
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B., Minghim, R., & Telea, A. C.
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(2014). Visual analysis of dimensionality reduction quality for parameterized projections. Computers & Graphics, 41, 26-42.
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CheckViz

* Represents how much each point suffers from Missing / False Distortions

* Missing Neighbors: Green, False Neighbors: Purple

Open side n

Lespinats, Sylvain, and Michaé&l Aupetit. "CheckVviz: Sanity Check and Topological Clues for Linear and Non-Linear Mappings." Computer Graphics Forum. Vol. 3@. No. 1. Oxford, UK: Blackwell Publishing Ltd, 2011.
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Reliability Map

UMAP Isomap
(St, Co) = (.801, .807) N ~ (St, Co) = (.528, .670)
\

Missing Both occurred
Group

LLE LLE + Interaction
(St, Co) = (.558, .730)

Jeon, Hyeon, et al. "Measuring and explaining the inter-cluster reliability of multidimensional projections.
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IEEE Transactions on Visualization and Computer Graphics 28.1 (2021):

551-561.
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Colange, Benoit, et al. "MING: An interpretative support method for visual exploration of multidimensional data."
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Information Visualization 21.3 (2022): 246-269.



roxilens

Heulot, Nicolas, Michael Aupetit, and Jean-Daniel Fekete.
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"Proxilens: Interactive exploration of high-dimensional data
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using projections.

VAMP: EuroVis Workshop on Visual Analytics using Multidimensional Projections.



Distortion-aware Brushing

Points are to resolve distortions Users can visual 2D clusters
in high-dimensional projections that match

Jeon, Hyeon, et al. "Distortion-aware brushing for interactive cluster analysis in multidimensional projections.” arXiv preprint arXiv:2201.06379 (2022).
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Measuring and Explaining Distortions
in Practice

« ZADU

* A Python library serving diverse distortion metrics
* Provides 19 metrics so far

e Latest release: v0.2.1

2 & @ 2 &g 2 o —
13 4 5 & 5 4 z 8 2 34 g = 2
£ 8 - ot ey s o o - —_ = 4
Qu|lz © & 5 8 ® g ©W & E - 4 S5 8
BE|Q 4 8 % g & » 25 § T ¢ 3 C
$8l5 £ § T 3 3 2% 3z %5 ¢B
22|32 3 & § =& & = € 5 #%2 &8 88 § @
Type Measure Ref. E&5|5 = £ 8 &£ &4 © 8 &2 8 %8 = 8 N
Trustworthiness & Continuity 40] Y 1 A A (@TS) A G S ),
Mean Relative Rank Errors [26] \ ‘o e o)
Local Continuity Meta-Criteria 4] (@) O
Local Neighborhood Hit [34]) (©) (o)
Neighbor Dissimilarity [10] O (@)
Class-Aware Trustworthiness & Continuity (6] " (@) (@)
Procrustes Measure [12) O
Steadiness & Cohesiveness (18] v | O O N
Cluster-level Distance Consistency 137] (@)
) Internal Clustering Validation Measures [21] e O
Clustering + External Clustering Validation Measures [42] & ©) (@)
Stress  [23,24] | (e} lofiilerTie;
Kullback-Leibler Divergence [13] (ol i e)
= Distance-to-Measure 3]
Global Topographic Product (1] - 8
Pearson’s correlation coefficient r [11) (@] O
Spearman’s rank correlation coefficient p [36] O (@)
Jeon, Hyeon, et al. "Zadu: A python library for evaluating the reliability of dimensionality reduction embeddings." 2023 IEEE Visualization and Visual Analytics (VIS). IEEE, 2023.
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/ADU

« ZADU 1s accessible
* Served as a Python library, which can be easily integrated with existing tools
* Deployed via pip --- easy to install and execute

« ZADU is scalable

* ZADU automatically optimizes the execution of distortion measures
* It 1s also accelerated by a parallel computing based on CPU multithreading

 ZADU covers a wide range of distortion measures
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/ADU

Performance - ZADU vs. Our metrics library

« ZADU is accessible 40| = éﬁ?;f';r‘:;’:"geas”ra
* Served as a Python library, wh ol = Ours+Pre-traced
* Deployed via pip --- easy to in @
* ZADU is scalable? E 20
* ZADU automatically optimize: o
* It 1s also accelerated by a paral
« ZADU covers a wide range of dis 0z 1000 5500 5000

Dataset size (# rows)

Machado, Alister, Michael Behrisch, and Alexandru Telea. "Necessary but not Sufficient: Limitations of Projection Quality Metrics." Computer Graphics Forum. 2025.
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New options available — Now at EuroVis

Table 1: Metrics implemented by the benchmark of Espadoto et al. [EMK*21], ZADU [JCJ*23], and our work. Empty circles (o) denote
implementation issues in ZADU. Specifically, the Procrustes statistic is computed incorectly; the Topographic Product yields division by zero
errors in cases which should be properly handled.

Implemented in

Metric Introduced in Espadoto et al. [EMK*21] ZADU [ICI*23 Ours
Average Local Error MCMTI14 . [
Continuity and Trustworthiness VKO06a . . ]
Class-Aware Continuity and Trustworthiness CPA*20 . .
Distance Consistency (DSC) SNILH09 . .
Distance-to-Measure CCSM11 .

Proportion of False (resp. True) Neighbors MCMT14 [
Jaccard Similarity of Neighbor Sets Jac01 [
Local Continuity Meta-Criteria CB09 .

Mean Relative Ranking Errors LV09] . .
Neighbor Dissimilarity FKYM?23] 3

Neighborhood Hit PNMLO8 . .
Normalized Stress [Kru6da, Kru64b, JCC* 11] . . ]
Pearson Correlation of Distances GZZ05 . .
Procrustes Statistic GRQ9 o .
Scale-Normalized Stress SMK24 .
Shepard Goodness SC88 . . .
Steadiness and Cohesiveness JKI*21 .

Topographic Product BP92 o

Internal Clustering Validation Measures Jcc* 11 ]

Clustering + External Clustering Validation Measures XWY™*21] .

Machado, Alister, Michael Behrisch, and Alexandru Telea. "Extensible TensorFlow Implementations of Projection Quality Metrics." (2025).
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/. ADU Interface

from zadu import zadu

hd, 1d = load_datasets()

spec = [{
gy = tncd,
"params": { "k": 20 },
iy
34" » “snc",

"params": { "k": 30, "clustering_strategy": "dbscan" }

}]

scores = zadu.ZADU(spec, hd).measure(1ld)
print("T&C:", scores[0])
print("S&C:", scores[1])
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/. ADU Interface

from zadu import zadu from zadu.measures import *
hd, 1d = load datasets() mrre = mean_relative_rank_error.measure(hd, 1d, k=20)
Spéc = { - pr = pearson_r.measure(hd, 1d)

nigh T nh = neighborhood_hit.measure(1ld, label, k=20)

. ’

"params": { "k": 20 },
5 4

Ilidll : llsncll'

"params": { "k": 30, "clustering_strategy": "dbscan" }
}]

scores = zadu.ZADU(spec, hd).measure(1ld)
print("T&C:", scores[0])
print("S&C:", scores[1])
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Visualizing Distortions with ZADU

UMAP Projection CheckViz with S&C Reliability Map with S&C

Low Both
Cohesiveness occurred

Low
Steadiness
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Visualizing Distortions with ZADU

from zadu import zadu

from zaduvis import zaduvis

import matplotlib.pyplot as plt

from sklearn.manifold import TSNE

from sklearn.datasets import fetch_openml

hd = fetch_openml('mnist_784', version=1, cache=True).data.to_numpy()[::7]
1d = TSNE().fit_transform(hd)

## Computing local pointwise distortions

spec = [{
"id": "tnc",
"params": {"k": 25}
o
"id": "snc",
"params": {"k": 50}
}H

zadu_obj = zadu.ZADU(spec, hd, return_local=True)
scores, local_list = zadu_obj.measure(ld)

tnc_local = local_list[0]
snc_local = local_list[1]

local_trustworthiness = tnc_locall["local_trustworthiness"]
local_continuity = tnc_locall"local_continuity"]
local_steadiness = snc_local["local_steadiness"] 2
local_cohesiveness = snc_local["local_cohesiveness"]

fig, ax = plt.subplots(1l, 4, figsize=(50, 12.5))

zaduvis.checkviz(ld, local_trustworthiness, local_continuity, ax=ax[@])
zaduvis.reliability _map(ld, local_trustworthiness, local_continuity, k=10, ax=ax[1])
zaduvis.checkviz(1ld, local_steadiness, local_cohesiveness, ax=ax[2])
zaduvis.reliability_map(ld, local_steadiness, local_cohesiveness, k=10, ax=ax[3])

. . . M2y s LINKOPING
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Note: We will use an easier way in our programming practice!!



What you learned today

* Dimensionality Reduction - Overview
 PCA, MDS
* Modern nonlinear DR

* Quality Assessment
* Distortion types
* Stretching/Compression, Missing/False Neighbors/Groups
* Quality metrics
e Global, Local, and Cluster-level metrics

* Visualizing quality metrics
* ZADU library
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